BIOFILTRATION SWALE WORKSHEET

2005 Surface Water Design Manual Sizing Method

D '	
Pro	lect.
110	CCL

METHODS OF ANALYSIS (Section 6.3.1.1)

Step	1)	Calculate	design	flows
$\mathcal{L}_{\mathcal{L}}$		Cuicuiace	ucoicii	110 110

Step 1) C	Calculate design f	<u>lows</u>			
Biofiltrati	on swales general	ly precede othe	er water qua	lity faci	lities (See menus in 6.1)
Design flo	ows depend on sec	quence with de	tention facil	ity. (Sec	etion 6.2.1)
Preced	ling detention	Qwq = 60%	2-yr, develor	ed, KCF	RTS flow with 15-min time step
	ving detention	Qwq = 2-yr	elease rate fi	rom dete	ntion facility
If no high	flow bypass	Q _{100-yr}		(cfs)	High flows bypass or flow through (6.3.1.1) See 3.2.2 KCRTS/Runoff files Method
		Q _{25-yr}		(cfs)	"
Water qua	lity design flow	Q _{2-yr} Q _{wq}		(cfs)	11
Rainfa	II Region: Seatac o	r Landsburg?			See Figure 3.2.2.A
Soil Ty	pe: Till or outwash	?		_	See Table 3.2.2 B
Forest				(acres)	Areas draining to swale (3.2.2)
Pasture	е			(acres)	п
Grass				(acres)	п
Wetlar	nd			(acres)	п
Imper	vious			(acres)	п
Scale I	Factor:			. `	See Figure 3.2.2.A
Time S	Step: 15-min		15-min	•	Required "15 min" (6.2.1)
Data T	ype: Reduced or hi	storic?			Recommend "Reduced" (3.2.2.1)
Step 2) C	Calculate swale be	ottom width			
	7 ''7	width of swale		(ft)	Simplified Manning's formula
1.49 y ¹	$^{.67} \mathrm{s}^{0.5}$				
$Q_{wq} =$	water quality design			(cfs)	Calculated in Step 1
$n_{wq} =$	Manning's roughn	ess coefficient	0.20	(61)	Required 0.20
y = s =	design flow depth longitudinal slope,	along flow		(ft) (feet/ft)	Mowed 2 in. (0.17ft), Rural 4 in. (0.33ft)
If the botto	m width is calculated	to be between 2.	and 10 feet p	oceed to	Sten 3
			-		te the design flow depth (y).
					rease design flow depth (y),
install f	flow divider and flow	spreader, or reloc	cate swale afte	er detenti	on facility
Step 3) D	etermine design	flow velocity			
	A _{wq} design flow vel			(fps)	Flow Continuity Eq.
A _{wa} =	by+Zy ²			(sf)	Cross-sectional area at design depth
Z=	side slope length	per unit height		. ` ′	Select now
If the veloc	ity exceeds 1.0 foot p	er second, go bac	k to Step 2 an	d modify	longitudinal slope, bottom width, or depth.

If the velocity is less than 1.0 foot per second, proceed to step 4.

Step 4) (Calculate swale length			
L= 540 v _w	q = swale length		(ft)	
540 =	hydraulic residence time	-	(s)	
$v_{wq} =$	design flow velocity		(fps)	Calculated in Step 3
If the swale	th is less than 100 feet, increase the lead elength can be accommodated on the th is too long for the site, proceed to St	site, proceed		
Step 5) A	Adjust swale layout to fit on sit	<u>e.</u>		
Reduce s	wale length and increase bottom	width to pr	ovide a	in equivalent top area.
$A_{top} = (b_i + b_i)$	$D_{\text{slope}} L_{\text{i}} = (b_{\text{f}} + b_{\text{slope}}) L_{\text{f}}$		(sf)	Calculate top area at WQ design depth
$b_f=$	increased bottom width		(ft)	Select now
b _{slope} =	2Zy (ft) top width above sides		_ (ft)	
L _f =	reduced swale length		_ (ft)	Select now; Required minimum 100 ft
	3 and recalculate design flow velocity te to Assure the 9 minute retention	(v) using b _f .		
Step 6) I	Provide conveyance capacity for	r flows hig	her tha	an Qwq
Meet con	veyance requirements of Section	1.2.4. and	check of	conveyance and velocity of high flows.
A) $Q_c =$	$1.49/n_c$ $A_c R_c^{0.67} s^{0.5}$		(cfs)	Manning's Eq.; 100-yr or 25-yr flow in Step 1
n _c =	Manning's roughness coefficient			Manning's "n" from Table 4.4.1 B
$A_c=$	$by_c + Zy_c^2$		(sf)	Cross sectional area
$R_c=$	$A_c/(b+2y_c(Z^2+1)^{0.5})$		(ft)	Hydraulic Radius
S =	longitudinal slope, along flow		(ft/ft)	Selected in Step 2
$y_c =$	depth of 25-yr or 100-yr flows		(ft)	Calculate now
B) v ₁₀₀ =0	Q ₁₀₀ /A ₁₀₀		(fps)	
If v ₁₀₀	exceeds 3.0 feet per second, return to S	Step 2 and inc	rease the	e bottom width or flatten slope.
Sizo Sun	amany			
Size Sun Land area		ss. setbacks	and if	necessary, area to convey high flows.
	Water surface at conveyance dep		_ (sf)	necessary, area to convey mgn no wo.
	ction includes depth, channel slop times length=	be x length,	and, if _(ft)	necessary, underdrain and high flows. From Steps 3, 4 and 6
Swale Water Flow Under Swale Acces Soil a	nd plantings s (Section 6.2.4)	l Flow Spre	eading	
Setba	cks (Section 6.2.3)			